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Using simple Fourier transform techniques and extensions to stationary-phase 
methods, the behaviour of surface gravity waves is determined near triply 
coalescing roots of the dispersion re€ation. It is shown that the amplitude of the 
surface wave is proportional to (aU/ax)-p a t  the location of the triple root. Far 
from the triple root it satisfies conservation of action. The internal wave is 
modelled simply by its surface current U .  

Asymptotic orders of magnitude are also given for the case aU/ax = 0 at the 
triple root. 

1. Introduction 
In  an earlier paper (Gargett & Hughes 1972) it  was shown that the constant- 

action solution for interacting surface and. internal gravity waves displays 
singularities and that these occur at  coalescing roots of the surface-wave frequency 
dispersion relation. The present paper discusses the removal of these singularities 
by using simple extensions to ordinary stationary-phase techniques. 

It has been shown by many researchers (Shand 1853; Lafond 1962; Perry & 
Schimke 1965; Ape1 et al. 1975) that striking patterns are produced in a surface 
wind-wave field by the presence of internal waves. The interaction can be strong 
enough to produce rough, breaking areas alternating with very smooth ‘ slicky ’ 
regions in winds up to 20 knots, or particular enough (apparently) to enhance 
only a narrow part of the wind-wave spectrum and produce long-crested semi- 
regular waves a t  particular parts of the internal wave field (Gargett & Hughes 
1972). The present problem emerged from an attempt to describe the interaction 
theoretically, and we contend that within the basic assumption of the theory the 
proper representation of any surface wave field suffering this kind of perturbation 
is in terms of the results given here. 

In  our model, the surface wave field is assumed to be irrotational, the potential 
is expressed as a Fourier integral and the equations of motion are linearized. Our 
solution represents the ‘free’ wave field, that is, each component separately 
satisfies the equations of motion and remains bounded as 1x1) IyI or It1 + CO. Other 
boundary and initial conditions can be obtained by simple Fourier superposition. 
To obtain our solution we have merely performed one of the integrations in the 
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triple Fourier integral. In the absence of a perturbing current this process would 
lead to the usual frequency dispersion relation and the condition that the most 
general three-dimensional (x, y and t )  transform contains a one-dimensional delta 
function of arbitrary constant ‘area’. In the present case we obtain the well- 
known Doppler-shifted approximate dispersion relation and an approximate 
delta function whose ‘area’ is non-constant (but exhibits constant action flux) 
and in some cases non-arbitrary owing to the presence of caustics. 

Because of the linearization, finite amplitudes are obtained by superposition, 
and randomness and broad-band effects can be straightforwardly incorporated. 
The work by Holliday (1973), on the other hand, indicates that finite amplitude 
self-interactions (or amplitude dispersion effects) also remove the singularity. 
Unfortunately it is not clear a t  present how general this result is since his finite 
amplitude model is not readily extendible to include broad-band, random effects. 
In  view of this difficulty, we consider the present approach worthy of attention 
not only in its application to the present problem but also because it may be 
easily extended to include other effects (such as surface tension, simple wind 
growth terms, depth dependence, etc.). It also provides a basis on which to com- 
pare numerical treatments which include nonlinear surface wave-wave inter- 
actions (West, Thomson & Watson 1975). 

The basic assumption explicitly ignores all cross-spectral coupling of surface- 
wave components, in particular, the important resonant couplings. It is known 
that the time scale for these interactions is - l‘/(V[)2, where T is a chkracteristic 
period of the surface waves and (V[)* is the mean-square slope of the interacting 
components (Phillips 1966,s 3.8). This can be made arbitrarily large by restricting 
the surface-wave amplitudes (more precisely, slopes) to sufficiently small values. 
On the other hand, the internal-wave interaction theory to be presented is linear 
in the surface-wave amplitude and it can be shown that its characteristic inter- 
action time scale is - h,T/h,, where AI/hs is the ratio of internal-wave and 
surface-wave wavelengths. This is independent of surface-wave amplitude and 
thus will dominate the cross-spectral coupling terms for small enough surface 
slopes and short enough times. 

At the centre of the analysis is the technique of evaluating integrals with many 
nearby stationary-phase points. This technique has undergone steady research 
in the past two decades, with the work by Bleistein (1967) and Ursell(l972) being 
most relevant to the present paper. (See also Ludwig & Olver 1970.) 

In  very recent years increasing use has been made of Pearcey’s cusp functions, 
particularly by acousticians calculating approximate solutions to the wave 
equation in a varying medium. These functions are not well known and since 
they form the basis of the surface-wave solution obtained here, an appendix has 
been included in which We have defined some of their properties. 

The internal wave is modelled by its most basic simple form: a non-dispersive 
field with a horizontal current that is uniform over all depths significantly 
affected by the surface waves. This is an idealization of a two-layer wave system 
in which the depth of the upper layer is large compared with the surface-wave 
wavelength and small compared with the internal-wave wavelength. 

The analysis allows the internal-wave current to be arbitrarily large (but less 

- 
- 
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than the internal-wave phase velocity) and i t  is asymptotically correct as the 
ratio of the internal-wave wavelength and the surface-wave wavelength becomes 
infinite. The present technique provides an alternative approach to a similar 
problem studied by Smith (1976) and it also provides an extension to his solution 
(for the case aUfax = 0 a t  the triple root). 

2. Approximation of the equations of motion 
In  the interests of simplification of this somewhat complicated problem, we 

shall ignore surface tension and wind growthfdecay effects, and we shall assume 
that the depth is infinite. Let us also assume that potential flow exists. Then we 
may use the standard equations 

vzq5 = 0, 

a(b/at + +qz + gz = 0 ) 

$ + O  as z - f - c o ,  

where 4 is the velocity potential, cis the water height above an arbitrary reference 
level, q is the velocity vector and g is the acceleration due to gravity. Let us also 
assume that the surface wave does not affect the internal wave appreciably (or 
that the time scale of that variation is much longer than any other of interest). 
Then, with 

we have 

4 = 4,+4I, 6 = cs+cr, 

Expand ( 1 )  and (2) about z = cl and ignore terms of order 6: &? where n + m 2 2. 
With no loss of generality for this problem let the internal wave propagate along 
the x axis, i.e. 

Then with W the vertical internal-wave current and U the horizontal current, 

a4rlay = acI:,lay = 0. 

VZ4, = 0, 

The subscript CI indicates that quantities dependent on z are to be evaluated at 
z = cIcx, t ) .  It should be noted that we have retained the full nonlinear expressions 
for the internal-wave currents, which allows us to apply our results to cases where 
the currents are not vanishingly weak. (We must, however, avoid regions where 
vorticity is important since we have used a velocity potential to describe the 
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internal wave. For two-layer systems this is possible since the vorticity resides on 
the interface between the two fluids and is non-existent at the free surface.) The 
first of these three equations is solved exactly if q5s is defined by an integral 
transform: 

This expression can be inserted in the second equation, the operation 

can be performed under the integral sign, and z can then be put equal to &(x, t )  
in the exponent in q5s. This allows us to solve for cs by simple division of the term 

g + ~ + u - + w -  . [aw ;: a:lcl 
Using DW/Dt to represent the substantial derivative in the square brackets in 
this term, k for (k2, + k:)3 and the subscript 0 to mean evaluation a t  z = c,, we 
obtain 

Cs = - / jJ+_[ i~+ iU,k l+W,k]  
g+DW/Dt 

x @(kl, k,, a)exp(i(k,z+k,y+at) +kCI(x,t)}dkldk2da. 

Since Q and the term in the square brackets are functions of x and t ,  this is not 
a simple Fourier transform definition for We may, however, substitute this 
expression along with the expression for $sinto the third equation and obtain the 
following integral equation for @: 

( a  a )  ax 
~ + i u o k l + w o ~ )  

4- at+"% g+DW/Dt 

Again we have a functional dependence on x and t in CI and in the terms in the 
square brackets. It is this dependence which requires us to use the approximate 
stationary-phase techniques to determine @. 

We shall now reduce $he complexity of the expressions in the square brackets 
by ignoring the very small terms. Let us assume that the surface current U, and 
the propagation velocities of the internal and surface waves are of the same order. 
Let us designate the internal-wave wavenumber by k, and let us define p = k/k,. 
We shall assume p B 1 and retain terms which are O( 1) and O(p-l) only. From 
(3a) ,  kI& = O(p-l), and from ( 3 b ) ,  W,/U, = O(p--l). This leads to 

DW/Dt = O(gp-2), 
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and so f) W/Dt can be ignored compared with g .  Similar comparisons and some 
algebraic rearranging result in 

The expression in the square brackets in ( 4 b )  is O(p-l)  compared with gk. Before 
solving ( 4 b )  for a, it  should be noted that if we put U (and &) equal to zero the 
terms in the braces become independent of (x, t), and thus we recover a delta 
function for @ which integrates to produce the familiar gravity-wave dispersion 
formula. For the case U $: 0, we shall approximate <D by an exponential function 
and evaluate the integral equation by asymptotic means (p -+ 00). 

3. Ordinary asymptotic solution 
In  order to illustrate the asymptotic procedure, we shall first use arguments 

based on ordinary stationary-phase methods. We shall obtain a solution for 
by a method equivalent to solving the energy-and wavenumber conservation 
equations (Phillips 1966, $0 3.5-3.7). In  the next section we shall examine the 
stationary-phase process in detail and extend it to cover the triple-root case. 

The variation in y may be transformed out immediately. Noting that the 
argument of U, is O( l), we find that k, x and crt are O(p)  and k is O( 1). Let 

where f and a are O(1). Then, using standard stationary-phase techniques, i.e. 
azflak: + 0 and a2flaa2 + 0, (4 b )  can be integrated. If we force the two largest terms 
in the expansion in powers of p-l to be zero, we obtain an expression which 
relates the first partial derivativest off and also a partial differential equation 
for a. These reduce to ordinary derivatives for the special case Uo = U(x-ct), 
with c constant, and we shall now restrict our attention to this case only. It is 
apparent that, unless worse singuIarities arise when c is variable, the form of the 
solution for our special case will be all that is needed to represent the general 
solution in a uniformly valid sense. (The form U(x - ct)  is, after all, a valid subset 
of U ( x ,  t ) .  It is not expected that worse singularities will occur, although we have 
not solved the problem for general U(x, t).) 

Let us redefine the co-ordinates in terms of a moving axis; in this way we shall 
be able to transform out the time dependence directly from (4). Let 

x-ct = 7, k,c+cr = w ,  

au du i a u  
ax c a t .  
_ -  --=--  

t With the notation U, = U ( x ,  t). the expression referred to is 
gk = {v+ k, U (  - aflak,, - aflar)]'. 
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Thus ( 5 )  becomes 
= 4 k 1 ,  k,, w )  exp [ipf (k , ) l+  O(p-1) 

and the stationary-phase solution to ( 4 b )  becomes 

where the argument of U is -,uf'(k,) and P ( k , , w )  is an unspecified 'constant' 
of integration. 

Using these expressions in (4a), and retaining only the largest term in the 
expansion, gives 

= - ~ ~ ~ + m P ( o , k , ) e x p { i k , y + i w t } d k 2 d w ~  +m [ w + k , ( U - c ) ]  

--m - m  

)" exp {ik,  x + ipf (k,)}  dk,. (7  a )  f ""(4 { gk,/k - 2{w + k,( U - c)}{ U - c} 

The integration over k, provides a stationary-phase point a t  x+pf  "(k,)  = 0, and 
iff "(k,)  + 0 for any x of interest, 

The choice of signs is determined by the sign off "I, and P must be such that is 
real for any real case. (The phase term Ik,(x) dx is obtained by expressing pf ( k , )  
as Ipf ' (kJ  dk,, which from the definition of the stationary phase is - Ix dk,. This 
integration is done by parts and provides - xk, + /k , (x)  ax.) From the definition 
off (k , )  we find that the k, roots are given by 

g(k;+ki ) t  = ( w + k l [ U ( ~ ) - c ] ) ~  (7c) 

and this provides four real roots, one of which is always distinct and three of 
which may coalesce (Gargett & Hughes 1972). If there is a coalescence for some 
y (and k,, w ,  c), f "(k,)  = 0 a t  that point and the stationary-phase approximations 
break down. It should be noted that (7  b )  precisely defines the action-conserving 
solution of Longuet-Riggins & Stewart (1961) and Bretherton & Garrett (1968): 
the eighth root in the numerator of the integrand is the square root of the local 
wave frequency, and the denominator is the square root of the energy trans- 
mission velocity. Therefore the average square of the transform (in k,, w )  of Q, 
which is the energy spectrum multiplied by the energy velocity and divided by 
the local frequency, is a constant. 

We shall now outline the solution steps necessary when f "  = 0 somewhere. In  
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fact we shall analyse the case where f IN = 0 a t  the same location: this represents 
the worst singularity? and its uniformly valid solution contains the case 
f" * 0. 

4. Triple-root asymptotic method 
The usual stationary-phase approximation procedure is to change the variable 

of integration, in this case from k,  to u, such that the phase of the rapidly 
oscillating exponential contains powers of u up to u2, and such that the point of 
stationary phase is at  u = 0. Thus, in (7  a) we should have 

k,  2 + Llf (k , )  = p (  + +u2) 

and x+pf  ' (k , )  = 0 at u = 0. 

With this transformation the rest of the integrand can be expanded in a power 
series in u which can be integrated term by term. It becomes apparent that the 
nth term is O(,U--*@+~)) and therefore this series is the desired asymptotic 
expansion. In  the application of this method to the determination of @, the steps 
in the process can be clarified as follows. Let ko be a representative surface 
wavenumber scale for k and let I be a dimensionless distance O( l), then 

1 = k, x, q = k , / h ,  P = k, /kI ,  $(q, 4 = ql +f (4). 

Also let the integrand in (4) be 

Fl(L a) +F1F2(L q). 

Then a and f are defined from the solution of 

As indicated above, to establish the method let 

$(q, I) = +uo" + *us, 

then (aglaq) aq = uau 

and 

Let 

Then the integration can be performed and we find 

t If surface tension is included, it can be shown that four roots may coalesce. With 
g = 981 cm/sa and surface tension = 70 cmZ/s2, the parameters at coalescence are 
k, = 0.945 rad/cm, k, = 5 0.421 rad/cm, w = - 17.301 rad/s and 77-c = - 16.66 cm/s and 
the surface-wave propagation direction is a t  f 24" with respect to the internal-wave 
direction. For a triple root in the absence of surface tension, only the propagation direction 
is fixed absolutely (at f tan-l(O.5)t FS f 35.3"). 

43 F L M  74 



674 B. A .  Hughes 

Also, from the expansion, 

From the definition of + we find 

where 

limu(a$/ap)-l-+ (f"(q,)l-t, 
u-0 

f ' (ao) + I  = 0. (1.1a) 

By equating to zero the two largest powers of p-l in (10) we obtain the solution 
for the usual stationary-phase approximation : 

F,(qo) = 0, ( l i b )  

The assumption that f I' + 0 is implicit in the form of (9)) and we must now modify 
this equation suitably to account for the correct behaviour off. Since we know 
that f 'I' = 0 somewhere, we must include powers of u of up to fourth order: 

@(q,Z) = s o + ( ~ u 4 - ~ s 1 u " S 2 U ) ,  

(f '(q, I) + 1)  & = (a+/aq) dq = (u3 - S, u - s2) du, 

where so, are parameters to be determined later and the three coalescing roots 
off '(q, I) + 1 = 0 are chosen to coincide with the three roots of u3 - s1 u - s2 = 0. 
(For a further extension of this concept see Bleistein (1967) and Ludwig (1966).) 
The integral in (8 b)  becomes 

To evaluate this we must again expand the non-exponential part of the integrand, 
and the expansion which results in an asymptotic series in increasing powers of 
p-l is (Ursell 1972) 

As in the single-root case, we may equate the leading terms to zero after inte- 
gration. We then find after much algebra that the equations for f I ,  F, and a are 
exactly as before, i.e. (1  1 a-c),  with the evaluation point qo being one of the three 
solutions to (1 1 a).  

Using these values for f and a, and also using this triple-root expansion method, 
we may perform the k, integration for 6. With the same scaling and with other 
non-dimensional parameters defined by 
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we obtain 

<* = - i / / / - m  exp [ in~+iprm+ipql+ ip~(q)  + i < * z ( q 2 + r 2 ) & ~  
- m  

x [ p  + pV, - iW,(q2 + r2)+] 

f (q)  + ql = $(q) = s o  + ( )u4 - &s1 u2 - s2 u)  As before, 

and we expand the appropriate part of the integrand in the proper power series? 

m 

On integration, this yields 

P P + m  

with the three integrals IX, defined as follows (see also appendix): 

The values of ao, Po and yo are obtained from the simultaneous solution of 

with U ~ , , , ~ - S ~ U ~ , ~ , ~ - S ~  = 0 defining the three u roots. The three q roots are 
defined by 

Finally, the three s values are given by the three equations 

(r2 + = {@ + 4, ~*V*1W2. (15)  

(16) f(q,)  + zqn = so+ &A:+ *s,u; +s2un. 
' It is possible to generalize this equation by rewriting each side as an infinite power 

series (in p-l) with 'known' coefficients on the left-hand side and urn, bm and ym each 
becoming an infinite power series (in p-l). For the present problem we shall determine only 
the largest terms (three in this case), and will omit terms O(p-l). I n  the interest of 
simplicity, we shall ignore these terms first and thus circumvent the necessity for making 
the general expansion. To determine the coefficients on the right-hand side, we repeatedly 
differentiate with respect to u and evaluate both sides a t  the positions of the three roots. 
(The same process applied to a double root is examined in detail by Chester, Friedman t 
Ursell 1957.) 

43-2 
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Since f '(qn) = - 1 defines qn as a function of 1, integration by parts produces 

f ( q n )  + lqn = J ~ n ( z )  dl- (17) 

This completes the solution. Using (15), (17) and (16) and the defining cubic 
for ul, 2, 3, all parameters in (14) can be specified, and a,, Po and yo can be deter- 
mined as functions of 1 (and r , p ) .  

Further algebraic manipulations of the three equations in (16) can be performed 
using the properties of the u,. From the cubic we have U ~ + U ~ + U . ~  = 0 and 
ulu2uQ = s2, and, using similar relations, it is possible to determine so, s1 and s2 
separately in terms of the right-hand sides of (16). The expressions are unwieldy 
and will not be reproduced here. 

The coefficients a,, Po and yo are almost everywhere finite, since the zeros in the 
denominators of the right-hand sides of (14) occur a t  the same locations as the 
zeros in the numerators. (The coefficients are not finite if a double or triple root 
coincides with a zero in the gradient of V*; this case is discussed in the next 
section.) 

Figure 1 illustrates of the behaviour of Q as a function of 1 (i.e. k,/le, as a function 
of x-cct) for a velocity field which is sinusoidal (0" to 90" shown), and with the 
other parameters chosen to give (a)  a single root everywhere, ( b )  two separated 
double roots and (c) a triple root. The velocity U is also given. 

The three curves are solutions of the dispersion relation (16) [whose dimen- 
sional form is (7 c)] for the parameter values given in the caption. The ordinary 
stationary-phase approximations are valid if significant variations in wave- 
number and amplitude take place over distances which are large compared with 
the wavelength, thus, in particular, they break down where dk, /d(x-c t )  = 00. 

For curve ( a )  this does not occur and ordinary stationary-phase approximations 
are valid everywhere. For curve ( b )  this occurs twice (at the double roots) and for 
curve (c) once (at the triple root), and we need the extended stationary-phase 
solution to provide meaningful estimates for 6 in these regions. Figure 2 depicts 
the amplitude of the component for each of the three cases in figure 1;  the 
amplitude < is defined as I a, Izp-f + Po ITp-4 + yo I,*,!,-*\ and is normalized for 
each case by the amplitude at U = 0. 

In  general, the amplitude a t  the triple root is dominated by the first term, and 
i t  can be shown that for an arrangement of constants such that 

far from a multiple root, i.e. the constant-action form, a t  the triple root this form 
becomes 

5. Asymptotic order of magnitude for a multiple root near U' = 0 

It can be seen from (18) that if U' = 0 at a multiple root our solution still 
possesses a singularity. The reason for this breakdown is the implicit assumption 
that U' exists when defining f ' from the inverse function of U .  If U' is zero at the 
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I 1 1 I 

6 15 12.50 18.75 25.00 

x-ct (m) 

FIGURE 1. Variation of wavenumber for a particular current. Curve (a )  illustrates a single- 
root case, ( b )  two double roots and (c) a triple root. c = 0*33m/s, k1 = 64rad/km, 
k, = 22.52 rad/m, k, = - 13.016 rad/m, ,U = 351.9. For  (a )  w = -9.364 rad/s, for (a) 
o = - 10.33 rad/s and for (c) w = - 9.914 rad/s. 

root position, a quartic is not sufficient to define f uniformly. The problem may 
also be seen by referring to figure 1. Because of (6 a )  we may relabel the x - ct 
axis as -pf ‘(k). Thus the depicted curves can be considered as definingf’(k) as 
a function k, although we then have f ’ plotted along the abscissa and k plotted 
along the ordinate. With this interpretation in mind we see that the three curves 
can all be described by a cubic in k and indeed this is one interpretation of why 
a quartic for f is needed for this problem. However, if the double root on ( b )  or 
the triple root on (c)  coincided with the peak in U ,  i.e. U‘ = 0, the curvature 
of the k-curve at that point would be radically altered (even to the point of 
being cusplike, depending on the flatness of U )  and terms with fractional powers 
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I waves I 
I I present 

0' 

I I 

0 6.35 11.50 18.75 25.00 

z - ct (m) 

FIGURE 2. Amplitude dependence for the three oases shown in figure 1. 

would be needed to specify the behaviour off locally. Therefore, an adequate, 
uniformly valid specification off requires a generic form which naturally incor- 
porates all the 'loops', cusps and multiple-valuedness that are possible from 
solving (6 a). 

We have not identified that generic form, and in fact we expect that it will have 
an infinite number of disposable constants allowing for the vanishing of all the 
derivatives of U up to any order at the multiple-root position. Rather than pursue 
this line any further, we shall show that the integral in (12) over Q produces finite 
values for any regular behaviour of U at the triple point, and we shall give the order 
in ,u of the three largest terms in the expansion. With the non-dimensionalized 
form of the variables used in (12) let V*(Z) = V, - In. Then the location of interest 



Interaction of surface and internal gravity waves 679 

0 1 2 3 cx) 

Term 

First - 1/2 - 114 - 1/10 0 + 112 
Second - 112 - 112 - 112 - 112 - 112 

Y 

Third - 112 - 314 - 9/10 - 1  - 312 

TABLE 1. Exponents of p in expression for I. The first term is for the coefficient of yl, the 
second for the coefficient of yz and the third for the coefficient of y3. As the velocity behaviour 
becomes more strongly varying a t  the triple-root location, i.e. as n + co, the second and 
third term become progressively less important than the first and the first term itself 
becomes progressively larger. 

is 1 = 0,  and it is known that, for the triple root q2 = 2r2, IR = -(16r2/27)* 
(Gargett & Hughes 1972). Thus 

vm = -({3r2}U2)/2+1, 

and the integral in question is 

Let q = 24 ( r (  + e. Then a straightforward expansion of the terms in the integrand 
in powers of e produces the result that the largest terms behave as 

I = B/' e3/2n-4 exp {ip(eZ - As3in+l)) de, 

where A and B are functions of IR and r. By a direct application of the method of 
Bleistein (1967), we find 

-a3 

I N y1 p-(3-n)/(6+W + y p-4 + y3 p-(3+3n)/(6+2n) + . . . . 

Table 1 summarizes the behaviour of the exponents of p as functions of n. 

6. Summary 
One traditional analytic approach to the problem of nonlinearIy interacting 

waves is to examine the possible resonances that can occur between vanishingly 
weak waves. In  our case we should find a difference interaction occurring between 
a triad of waves two of which are surface waves with almost equal wavenumbers, 
the third being an internal wave with a much smaller wavenumber. The variation 
in surface-wave amplitude would then be ascribed to beats between the two surface 
waves and as such would necessarily be sinusoidal for a sinusoidal internal-wave 
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field. We have solved this particular form of interaction for the relaxed con- 
dition that the internal wave is not vanishingly weak. 

A second traditional analytical approach to this particular problem (disparate 
wavenumbers and frequencies, quadratic interaction) is to use the dynamical 
conservation equation and interpret the small wavenumber, small frequency 
wave as perturbing the medium in which the other wave(s) are propagating. This 
approach is equivalent to the WKB approximation and for very weak perturba- 
tions leads to the same results as the resonance theory. It is known to break down 
at caustics but it does have the advantage of being able to treat non-vanishingly 
weak perturbations. In  our method of solution we have extended the WKB 
technique to cover the ‘worst’ caustic situation present in this interaction problem 
(for aU/ax $. 0), namely two caustics which have merged into a cusp, and we have 
given the solution in terms of Pearcey functions. 

We find that we require the simultaneous existence of three modulated surface 
waves with coupled amplitudes and phases. The ordinary WKB solution allows 
these to be uncoupled and thus independently specified (in terms of boundary or 
initial values). As an example (using heuristic arguments), in figures 1 and 2, 
curve ( b ) ,  we have energy flowing along the curve in a zig-zag fashion from left 
to right; thus, since the flux of action must be constant, this insists on the proper 
coupling of the amplitudes of the three waves in the region between the double 
roots. For the triple root (curve c )  only one real root exists everywhere, however 
we again expect the action flux to be constant along the curve. This specifies the 
amplitude to the right of the singularity in terms of its value to the left. Of course, 
‘action’ and ‘energy’ fluxes are poorly defined in terms of sinusoids right a t  the 
singularities, but our extensions to the theory using Pearcey functions precisely 
circumvent this difficulty. 

Finally, at the triple-root point we find that c: aU/ax is boundedif aU/ax is non- 
zero, and c~(anU/a~n)(~-~)‘(6+2n) is bounded if aU/ax = a2U/ax2 = an--lU/axn-l = 0. 

I am indebted to R. Smith (Cambridge University) for bringing to my attention 
the original publication by Pearcey (1946) and for an interesting and fruitful 
correspondence on this whole subject. The program for calculating the three 
Pearcey functions was written and tested by R. Csomany. The examples that are 
illustrated were programmed and the graphs were prepared by R. S. Anderson. 
It is with great pleasure that I record my appreciation to them. The material 
covered in this paper has appeared as an appendix in DREP Report no. 75-3. 

Appendix. Behaviour of the three basic integrals (Pearcey functions) 
If we define the thredintegrals as 

then I1(x, y) = i aIo/ay, 12(x, y) = 2i aIo/ax and, in fact, aIo/ax = - @a210/ay2 with 
a Bessel-function boundary condition on y = 0. (See also Pearcey (1946)) who has 
previously discussed the case n = 0 and who provides values of lo( - x,  - 23y)/2*.) 
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1’ 

FIGURE 3. Isophase lines for In(%, y) calculated by ordinary method of stationary phase. 
The separation in phase between lines of the same set is 2n. 

Using the ordinary stationary-phase method, we find one wave system if 
y2 > &x3, three wave systems for y2 4 6 x 3  and a coalescence for y2 = &x3. If we 
exclude the region near the coalescence line (and the origin), we can approximate 
the integrals by 

vf-xvj-y = 0, j = 1,2 ,3 .  

Using these expressions, we have determined isophase lines for each of the three 
terms; these are depicted in figure 3. One term is represented by the lines drawn 
from the upper left to lower right, another by the symmetric set from the lower 
left to upper right, and the third term by the dashed lines. The heavy line is the 
coalescence curve. Along the y axis (one real root, v = y f ) ,  

l ~ o ( 0 7 Y f l  (&rb+ IYl% lIl(0,Yfl (W4 I1A0,Y)l - ( i 4 ~ l Y l ~ .  
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FIGURE 4. Perspective view of (a )  real part and ( b )  imaginary part of I&, y). The centre 
of the circle is the origin, and the range of z and y is - 20 to + 20. 
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Along any line of constant phase, the relevant term produces the following 
behaviour for large x :  

where ph, the phase, is the constant value of $v$ - $xvT - Sxv; - yvj. Using Airy 
functions, the description of the I;, may be extended to the situation where either 
x or y is large. I n  particular, along the coalescence line, the double-root terms 
behave as 

~ I o ( 3 ( i ~ Y l ) ~ , Y ) l  ZnAi(O)243-+ lyl-4 
~ I l ( 3 ( ~ ~ y ~ ) ~ , y ) ~  - 2nAi(O) Z-i%-* lyliA:, 

~ I z ( 3 ( ~ ~ y ~ ) ~ ,  y)I N BnAi(0) Z-i%3-* IyIi%. 

The real and imaginary parts of Io(x, y )  are shown in perspective in figures 4 (a )  

Finally, a t  the origin we have 
and ( b ) .  

z 2-37+0-981i, 

Il(0,O) = 0, 

z 0.663 + 1.60i. 
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